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github.com/mayacoda/react-battleship
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Game title

React Battleship

Intended game systems

Web browser, specifically on mobile so targeting iOS Safari and Android Chrome
Target age of players

Adults who attend tech conferences

A summary of the game’s story, focusing on gameplay

The player plays as a row boat captain in the open seas. They're surrounded by enemy boats and
their goal is to defeat as many other players as possible. Players engage in 1 on 1 games of
battleship with other players who are currently active. The games are shorter than usual (should be
only a few minutes), allowing for a fast-paced experience.

Distinct modes of gameplay

There are two modes: exploration and battle mode. In exploration, the player controls a row boat

through a 3D world in which they encounter other players. They can engage with other players in
battle at which point each player is presented with a Battleship game interface.

Unique selling points

e Snappy game experience — games last only a few minutes
e No login or authentication required — low barrier to entry

e Connects conference attendees in a shared experience

https://en.wikipedia.org/wiki/Game_design_document
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initPlayer
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ynchronizing
server state with
client state with
React Context

export const GameProvider = ({ children }: PropsWithChildren) => {
const [players, setPlayers] = useState<Record<string, Player>>({});
const [currentPlayer, setCurrentPlayer] = useState<Player | null>(null);
const [challenges, setChallenges] = useState<Player[]>([]);
const [onGameFinished, setOnGameFinished] useState<() => void>(() => {});
const [socket, setSocket] = useState<TypedClient | null>(null);
const [gameState, setGameState] =

useState<GameContextType["gameState"]>(null);

const [previousGames, setPreviousGames] = useState<EndState[]>([]);
const [isConnected, setIsConnected] = useState(false);
const navigate = useNavigate();

useEffect(() => {

const newSocket: TypedClient = io(SOCKET_URL, {
transports: ["websocket"],

R

setSocket(newSocket);

let localPlayers: Record<string, Player> = {};

let localPlayer: Player | null = null;

newSocket.on("disconnect", () => {
setIsConnected(false);
setGameState(null);
setPlayers({});
setCurrentPlayer(null);
setChallenges([]);
setPreviousGames([]);
navigate("/");

o

newSocket.on("initPlayer", (p: Player) => {
setIsConnected(true);
LocalPlayer = p;
cetCurrentPlaver(localPlaver):
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https://threejs.org/manual/#en/fundamentals
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Three.js

const scene = new THREE.Scene()
const camera = new THREE.PerspectiveCamera(75, width / height, 0.1, 1000)

const renderer = new THREE.WebGLRenderer()
renderer.setSize(width, height)
document.querySelector('#canvas-container').appendChild(renderer.domElement)

const mesh = new THREE.Mesh()
mesh.geometry = new THREE.BoxGeometry()
mesh.material = new THREE.MeshStandardMaterial()

scene.add(mesh)
function animate() {

requestAnimationFrame(animate)
renderer.render(scene, camera)

hy

animate()




Three.js
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hy

animate()

R3F.jsx
function App() {
return (
<div id="canvas-container">
<Canvas>
<mesh>

<boxGeometry />
<meshStandardMaterial />
</mesh>
</Canvas>
</div>
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ReactLobby.jsx

<div className="flex flex-col h-screen">
<Table>
<TableHeader>
<TableRow>
<TableHead>Name</TableHead>
<TableHead>Status</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{players.map((player) => (
<TableRow key={player.id}>
<TableCell>{player.name}</TableCell>
<TableCell>
{player.isPlaying ? (
<Badge>Playing</Badge>

) : player.id !'== game.currentPlayer?.id ? (
<Button size="sm" onClick={() => onChallenge(player.id)}>
Challenge
</Button>
) : null}
</TableCell>
</TableRow>
))}
</TableBody>
</Table>

</div>

R3fLobby.jsx

<>
<ambientLight intensity={1} />
<directionallLight position={[10, 10, 10]} intensity={3.5} castShadow />
<OrbitControls />
<WaterPlane
ref={planeRef}
size={100}
rotation={[-Math.PI / 2, 0, 0]}
position={[0, -0.1, 0]}
onClick={handlePlaneClick}
=
<ControlledPlayer player={currentPlayer!} ref={playerRef} />
{players.map((player) => (
<0therPlayer
key={player.id}
player={player}
onChallenge={onChallenge}
/>
)l

<>




Raycasting or Clicking?
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Raycasting or Clicking?

ReactLobby.jsx

<mesh
rotation={[-Math.PI / 2, 0, 0]}
position={[0, - , 0]}
ref={planeRef}
onClick={(event: ThreeEvent<MouseEvent>) => {
(!'planeRef.current || !'currentPlayer) :

- {x, y, z} = currentPlayer.position;
direction I Vector3().subVectors(
event.point,
Vector3(x, vy, z),

);
distance = direction.length();

direction.normalize();
direction.multiplyScalar(Math.min(distance, 3));

setTarget(direction.add( Vector3(x, v, 2z)));
3!

args={[100, 100
color="1ightblue"
</mesh>
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GridHelper

WaterBackground

Game.jsx

<WaterBackground
onClick={(e: ThreeEvent<MouseEvent>) => {

const x = e.point.x;

const z = e.point.z + 3.25;

const isInOpponentGrid =
X >= -GRID_WIDTH / 2 &&
X <= GRID_WIDTH / 2 &&
z >= -GRID_WIDTH / 2 &&
z <= GRID_WIDTH / 2;

if (!'isInOpponentGrid || !'gameState?.yourTurn || showCannon) {
return;

+

const col = Math.floor((x + GRID_WIDTH / 2) / CELL_SIZE);

const row = Math.floor((z + GRID_WIDTH / 2) / CELL_SIZE);
setShowCannon(true);
setCannonEnd(e.point.clone());

setTimeout (() => {
setShowCannon(false);
onCannonFired(row, col);
onFired();

}, cannonDuration + 200);

+r
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Game.jsx

<6rid grid={gameState.yourGrid} position={[0, 0, 3.25]}>
{gameState.yourShipPositions.map((ship) => {
const rotationY = ship.direction === "vertical" ? 0 : -Math.PI / 2;

-GRID_SIZE / 2;
-GRID_SIZE / 2;

let positionZ
let positionX

// offset based on size of ship
positionZ +=

ship.direction === "horizontal"
? (SHIP_SIZE[ship.type]l * CELL_SIZE) / 2
. 0;
positionX +=
ship.direction === "vertical"
? (SHIP_SIZE[ship.type] * CELL_SIZE) / 2
. 0;

// offset based on start position
positionZ += ship.start.x % CELL_SIZE;
positionX += ship.start.y * CELL_SIZE;

// offset to center of cell based on direction
positionZ += ship.direction === "vertical" ? CELL_SIZE / 2 : 0;
positionX += ship.direction === "horizontal" ? CELL_SIZE / 2 : 0;

const position = new Vector3(positionX, 0, positionZ);
return (
<mesh
position={position}
rotation={[0, rotationY, -Math.PI / 2]}
key={ship.type}

<cylinderGeometry args={[0.2, 0.2, SHIP_SIZE[ship.typel, 321} />
<meshStandardMaterial color="purple" />
</mesh>
)l
P}
</Grid>
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Animations

Turn ends in 7 - [ Opponent's turn ] -
Tap on enemy's grid to fire! **
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bit.ly/react-battleship



http://bit.ly/react-battleship

Resources

4 \Wawa Sensei’s React Three Fiber Ultimate Guide

4 Bruno Simon’s Three.js Journey

4 WebGameDev Community (newsletter, discord server)



https://lessons.wawasensei.dev/
https://threejs-journey.com/
https://www.webgamedev.com/

Thank you +

X  @maya_ndljk O @mayacoda



