Multiplayer Games with React
Three Fiber and WebSockets

Maya Nedeljkovic Batic @ React Day Berlin - Dec 8, 2023

Maya Nedeljkovic Batic

+
+
+
X
»

Art school dropout
Software engineer at Linear

Game development academic

@maya_ndljk

@mayacoda

<« Post

React Day Berlin jgg Dec. 8 & 12 %
@reactdayberlin

=2 Multiplayer games are the coolest! You'll learn with @maya_ndljk how
to structure the game code, render an interactive 3D scene in the
browser, and establish two-way communication between the client and
server.

reactday.berlin
e _k

A

10:00 AM - Sep 29, 2023 - 281.5K Views

QO 3 4 Q 42 [d 21

\ %>~ seesimilar posts

. Post your reply

G © INVNTIV » @ invntiv_- Nov 23
why in the name of all that is holy would anyone make a game in react

‘ O 1 (! L ih 27 [-~

<« Post

. React Day Berlin g Dec. 8 & 12 %

@reactdayberlin

+# Multiplayer games are the coolest! You'll learn with @maya_ndljk how
to structure the game code, render an interactive 3D scene in the
browser, and establish two-way communication between the client and
server.

o [INVNTIV

7 @ invntiv_

44
b, : : :
] why in the name of all that is holy would anyone make a game in react

6:44 AM - Nov 23, 2023 - 25 Views

1 3 A ank I\ 1

reactday.berlin
€

10:00 AM - Sep 29, 2023 - 281.5K Views

Q s 0 4 Q 42 [21 O

//
]\‘4 See similar posts > |

. Post your reply

‘ © INVNTIV » @ invntiv_- Nov 23
why in the name of all that is holy would anyone make a game in react

A

‘ Q1 T L il 27

Accessibility

Accessibility

@ 4 Accessible for you, as the developer

Accessibility

*

4 Accessible for you, as the developer

4 Accessible for your players

s 7

eact Battleship

github.com/mayacoda/react-battleship

Game Plan e

Game Plan fa

Game Plan fa

Design = Prototype &

Game Plan fa

Design ® Prototype = Blockout =

Game Plan fa

Design = Prototype # Blockout = Production

Game title

React Battleship

Intended game systems

Web browser, specifically on mobile so targeting iOS Safari and Android Chrome
Target age of players

Adults who attend tech conferences

A summary of the game’s story, focusing on gameplay

The player plays as a row boat captain in the open seas. They're surrounded by enemy boats and
their goal is to defeat as many other players as possible. Players engage in 1 on 1 games of
battleship with other players who are currently active. The games are shorter than usual (should be
only a few minutes), allowing for a fast-paced experience.

Distinct modes of gameplay

There are two modes: exploration and battle mode. In exploration, the player controls a row boat

through a 3D world in which they encounter other players. They can engage with other players in
battle at which point each player is presented with a Battleship game interface.

Unique selling points

e Snappy game experience — games last only a few minutes
e No login or authentication required — low barrier to entry

e Connects conference attendees in a shared experience

https://en.wikipedia.org/wiki/Game_design_document

Game title

React Battleship

Intended game systems

Web browser, specifically on mobile so targeting iOS Safari and Android Chrome
Target age of players

Adults who attend tech conferences

A summary of the game’s story, focusing on gameplay

The player plays as a row boat captain in the open seas. They're surrounded by enemy boats and
their goal is to defeat as many other players as possible. Players engage in 1 on 1 games of
battleship with other players who are currently active. The games are shorter than usual (should be
only a few minutes), allowing for a fast-paced experience.

Distinct modes of gameplay

There are two modes: exploration and battle mode. In exploration, the player controls a row boat

through a 3D world in which they encounter other players. They can engage with other players in
battle at which point each player is presented with a Battleship game interface.

Unique selling points

e Snappy game experience — games last only a few minutes
e No login or authentication required — low barrier to entry

e Connects conference attendees in a shared experience

https://en.wikipedia.org/wiki/Game_design_document

\..

focus on mobile

& 12yo nephew
doesn’t have to like It

Game title

React Battleship

Intended game systems

Web browser, specifically on mobile so targeting iOS Safari and Android Chrome
Target age of players

Adults who attend tech conferences

A summary of the game’s story, focusing on gameplay

The player plays as a row boat captain in the open seas. They're surrounded by enemy boats and
their goal is to defeat as many other players as possible. Players engage in 1 on 1 games of
battleship with other players who are currently active. The games are shorter than usual (should be
only a few minutes), allowing for a fast-paced experience.

Distinct modes of gameplay

There are two modes: exploration and battle mode. In exploration, the player controls a row boat

through a 3D world in which they encounter other players. They can engage with other players in
battle at which point each player is presented with a Battleship game interface.

Unique selling points

e Snappy game experience — games last only a few minutes
e No login or authentication required — low barrier to entry

e Connects conference attendees in a shared experience

https://en.wikipedia.org/wiki/Game_design_document

\..

focus on mobile

& 12yo nephew
doesn’t have to like It

Game title

React Battleship

Intended game systems

Web browser, specifically on mobile so targeting iOS Safari and Android Chrome
Target age of players

Adults who attend tech conferences

A summary of the game’s story, focusing on gameplay

The player plays as a row boat captain in the open seas. They're surrounded by enemy boats and
their goal is to defeat as many other players as possible. Players engage in 1 on 1 games of
battleship with other players who are currently active. The games are shorter than usual (should be
only a few minutes), allowing for a fast-paced experience.

Distinct modes of gameplay

There are two modes: exploration and battle mode. In exploration, the player controls a row boat

through a 3D world in which they encounter other players. They can engage with other players in
battle at which point each player is presented with a Battleship game interface.

Unique selling points

e Snappy game experience — games last only a few minutes
e No login or authentication required — low barrier to entry

e Connects conference attendees in a shared experience

https://en.wikipedia.org/wiki/Game_design_document

\..

focus on mobile

A how to set up
scenes

& 12yo nephew
doesn’t have to like It

\p

¥ must haves

Game title

React Battleship

Intended game systems

Web browser, specifically on mobile so targeting iOS Safari and Android Chrome
Target age of players

Adults who attend tech conferences

A summary of the game’s story, focusing on gameplay

The player plays as a row boat captain in the open seas. They're surrounded by enemy boats and
their goal is to defeat as many other players as possible. Players engage in 1 on 1 games of
battleship with other players who are currently active. The games are shorter than usual (should be
only a few minutes), allowing for a fast-paced experience.

Distinct modes of gameplay

There are two modes: exploration and battle mode. In exploration, the player controls a row boat

through a 3D world in which they encounter other players. They can engage with other players in
battle at which point each player is presented with a Battleship game interface.

Unique selling points

e Snappy game experience — games last only a few minutes
e No login or authentication required — low barrier to entry

e Connects conference attendees in a shared experience

https://en.wikipedia.org/wiki/Game_design_document

focus on mobile

A how to set up
scenes

Join page Lobbc./ page

Game page Grame page

Your tum

React Battleship

—
Your name]

-

(/]

_

|

s

7 Architecture

react-battleship

Server

| Client

Shared

react-battleship

Server

| Client

Shared

react-battleship

Server

Client

Shared

react-battleship

Server

Client

Shared

react-battleship

Server

! Client

Shared

react-battleship

Server

! Client

Shared

https://github.com/mayacoda/react-battleship

round gegs s Baff
e

s

e onee "/

:AM
ﬁ-{ ;

initPlayer

updatePlayers

InitPlayer

updatePlayers

move

challenge [P2]

challenge [P1]

challenge [P2]

challenge [P1]

accept [P1]

create room

challenge [P2]

challenge [P1]

accept [P1]

startGame

_ startGame
e e
_—

ynchronizing
server state with
client state with
React Context

export const GameProvider = ({ children }: PropsWithChildren) => {
const [players, setPlayers] = useState<Record<string, Player>>({});
const [currentPlayer, setCurrentPlayer] = useState<Player | null>(null);
const [challenges, setChallenges] = useState<Player[]>([]);
const [onGameFinished, setOnGameFinished] useState<() => void>(() => {});
const [socket, setSocket] = useState<TypedClient | null>(null);
const [gameState, setGameState] =

useState<GameContextType["gameState"]>(null);

const [previousGames, setPreviousGames] = useState<EndState[]>([]);
const [isConnected, setIsConnected] = useState(false);
const navigate = useNavigate();

useEffect(() => {

const newSocket: TypedClient = io(SOCKET_URL, {
transports: ["websocket"],

R

setSocket(newSocket);

let localPlayers: Record<string, Player> = {};

let localPlayer: Player | null = null;

newSocket.on("disconnect", () => {
setIsConnected(false);
setGameState(null);
setPlayers({});
setCurrentPlayer(null);
setChallenges([]);
setPreviousGames([]);
navigate("/");

o

newSocket.on("initPlayer", (p: Player) => {
setIsConnected(true);
LocalPlayer = p;
cetCurrentPlaver(localPlaver):

Login Login

Enter your username Enter your username

Login Login

Enter your username Enter your username

https://threejs.org/manual/#en/fundamentals

Renderer
Scene Camera

Mesh Object3D Mesh Light

LMesh Mesh ‘ E Mesh Object3D
\a— — | ,

y

Mesh Mesh

TAvvtiira

Texture

https://threejs.org/manual/#en/fundamentals

Three.js

const scene = new THREE.Scene()
const camera = new THREE.PerspectiveCamera(75, width / height, 0.1, 1000)

const renderer = new THREE.WebGLRenderer()
renderer.setSize(width, height)
document.querySelector('#canvas-container').appendChild(renderer.domElement)

const mesh = new THREE.Mesh()
mesh.geometry = new THREE.BoxGeometry()
mesh.material = new THREE.MeshStandardMaterial()

scene.add(mesh)
function animate() {

requestAnimationFrame(animate)
renderer.render(scene, camera)

hy

animate()

Three.js

const scene = new THREE.Scene()
const camera = new THREE.PerspectiveCamera(75, width / height, 0.1, 1000)

const renderer = new THREE.WebGLRenderer()
renderer.setSize(width, height)
document.querySelector('#canvas-container').appendChild(renderer.domElement)

const mesh = new THREE.Mesh()
mesh.geometry = new THREE.BoxGeometry()
mesh.material = new THREE.MeshStandardMaterial()

scene.add(mesh)
function animate() {

requestAnimationFrame(animate)
renderer.render(scene, camera)

hy

animate()

R3F.jsx
function App() {
return (
<div id="canvas-container">
<Canvas>
<mesh>

<boxGeometry />
<meshStandardMaterial />
</mesh>
</Canvas>
</div>

Name

7»[_’

ReactLobby.jsx

<div className="flex flex-col h-screen">
<Table>
<TableHeader>
<TableRow>
<TableHead>Name</TableHead>
<TableHead>Status</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{players.map((player) => (
<TableRow key={player.id}>
<TableCell>{player.name}</TableCell>
<TableCell>
{player.isPlaying ? (
<Badge>Playing</Badge>

) : player.id !'== game.currentPlayer?.id ? (
<Button size="sm" onClick={() => onChallenge(player.id)}>
Challenge
</Button>
) : null}
</TableCell>
</TableRow>
))}
</TableBody>
</Table>

</div>

R3fLobby.jsx

<>
<ambientLight intensity={1} />
<directionallLight position={[10, 10, 10]} intensity={3.5} castShadow />
<OrbitControls />
<WaterPlane
ref={planeRef}
size={100}
rotation={[-Math.PI / 2, 0, 0]}
position={[0, -0.1, 0]}
onClick={handlePlaneClick}
=
<ControlledPlayer player={currentPlayer!} ref={playerRef} />
{players.map((player) => (
<0therPlayer
key={player.id}
player={player}
onChallenge={onChallenge}
/>
)l

<>

Raycasting or Clicking?

Raycasting or Clicking?

Raycasting or Clicking?

ReactLobby.jsx

<mesh
rotation={[-Math.PI / 2, 0, 0]}
position={[0, - , 0]}
ref={planeRef}
onClick={(event: ThreeEvent<MouseEvent>) => {
(!'planeRef.current || !'currentPlayer) :

- {x, y, z} = currentPlayer.position;
direction I Vector3().subVectors(
event.point,
Vector3(x, vy, z),

);
distance = direction.length();

direction.normalize();
direction.multiplyScalar(Math.min(distance, 3));

setTarget(direction.add(Vector3(x, v, 2z)));
3!

args={[100, 100
color="1ightblue"
</mesh>

B B8O &GO X i . @ B QO O Od X

Join React Battleship Join React Battleship

What do we call you? What do we call you?

B B8O &GO X i . @ B QO O Od X

Join React Battleship Join React Battleship

What do we call you? What do we call you?

i . @ B8 0 O

Opponent's turn

-8

D

X

GridHelper

WaterBackground

Game.jsx

<WaterBackground
onClick={(e: ThreeEvent<MouseEvent>) => {

const x = e.point.x;

const z = e.point.z + 3.25;

const isInOpponentGrid =
X >= -GRID_WIDTH / 2 &&
X <= GRID_WIDTH / 2 &&
z >= -GRID_WIDTH / 2 &&
z <= GRID_WIDTH / 2;

if (!'isInOpponentGrid || !'gameState?.yourTurn || showCannon) {
return;

+

const col = Math.floor((x + GRID_WIDTH / 2) / CELL_SIZE);

const row = Math.floor((z + GRID_WIDTH / 2) / CELL_SIZE);
setShowCannon(true);
setCannonEnd(e.point.clone());

setTimeout (() => {
setShowCannon(false);
onCannonFired(row, col);
onFired();

}, cannonDuration + 200);

+r
=

Game.jsx

<6rid grid={gameState.yourGrid} position={[0, 0, 3.25]}>
{gameState.yourShipPositions.map((ship) => {
const rotationY = ship.direction === "vertical" ? 0 : -Math.PI / 2;

-GRID_SIZE / 2;
-GRID_SIZE / 2;

let positionZ
let positionX

// offset based on size of ship
positionZ +=

ship.direction === "horizontal"
? (SHIP_SIZE[ship.type]l * CELL_SIZE) / 2
. 0;
positionX +=
ship.direction === "vertical"
? (SHIP_SIZE[ship.type] * CELL_SIZE) / 2
. 0;

// offset based on start position
positionZ += ship.start.x % CELL_SIZE;
positionX += ship.start.y * CELL_SIZE;

// offset to center of cell based on direction
positionZ += ship.direction === "vertical" ? CELL_SIZE / 2 : 0;
positionX += ship.direction === "horizontal" ? CELL_SIZE / 2 : 0;

const position = new Vector3(positionX, 0, positionZ);
return (
<mesh
position={position}
rotation={[0, rotationY, -Math.PI / 2]}
key={ship.type}

<cylinderGeometry args={[0.2, 0.2, SHIP_SIZE[ship.typel, 321} />
<meshStandardMaterial color="purple" />
</mesh>
)l
P}
</Grid>

i . 0@ B& & &

8

D

@ B & O &

Opponent's turn

&

D

Game.jsx

<6rid grid={gameState.yourGrid} position={[0, 0, 3.25]}>
{gameState.yourShipPositions.map((ship) => {
const rotationY = ship.direction === "vertical" ? 0 : -Math.PI / 2;

-GRID_SIZE / 2;
-GRID_SIZE / 2;

let positionZ
let positionX

// offset based on size of ship
positionZ +=

ship.direction === "horizontal"
? (SHIP_SIZE[ship.type]l * CELL_SIZE) / 2
. 0;
positionX +=
ship.direction === "vertical"
? (SHIP_SIZE[ship.type] * CELL_SIZE) / 2
. 0;

// offset based on start position
positionZ += ship.start.x % CELL_SIZE;
positionX += ship.start.y * CELL_SIZE;

// offset to center of cell based on direction
positionZ += ship.direction === "vertical" ? CELL_SIZE / 2 : 0;
positionX += ship.direction === "horizontal" ? CELL_SIZE / 2 : 0;

const position = new Vector3(positionX, 0, positionZ);
return (
<mesh
position={position}
rotation={[0, rotationY, -Math.PI / 2]}
key={ship.type}

<cylinderGeometry args={[0.2, 0.2, SHIP_SIZE[ship.typel, 321} />
<meshStandardMaterial color="purple" />
</mesh>
)l
P}
</Grid>

i . 0@ B& & &

8

D

@ B & O &

Opponent's turn

&

D

'+ Production

Models In game

[0 nnnnnnnnnnnnn J

Animations

Turn ends in 7 - [Opponent's turn] -
Tap on enemy's grid to fire! **

Your Ships

A

Animations

Turn ends in 7 - [Opponent's turn] -
Tap on enemy's grid to fire! **

Your Ships

A

Ul Improvements

Join React Battleship

What do we call you?

bit.ly/react-battleship

http://bit.ly/react-battleship

Resources

4 \Wawa Sensei’s React Three Fiber Ultimate Guide

4 Bruno Simon’s Three.js Journey

4 WebGameDev Community (newsletter, discord server)

https://lessons.wawasensei.dev/
https://threejs-journey.com/
https://www.webgamedev.com/

Thank you +

X @maya_ndljk O @mayacoda

